A local estimate for the mean curvature flow
نویسندگان
چکیده
We establish a pointwise estimate of \(\vert A\vert \) along the mean curvature flow in terms initial geometry and HA\vert bound. As corollaries we obtain blowup rate an extension theorem with respect to \).
منابع مشابه
Local Techniques for Mean Curvature Flow
of ann-dimensional manifold without boundary into Euclidean space. We say Af = x(Mn) moves by mean curvature if there exists a one-parameter family Xt = x( ·, t) of immersions with corresponding images J..!I1 = x 1(lvfn) satisfying d dtx(p,t) = -H(p,t)v(p,t) (1) x(p,O) = xo(P) for some initial data xo. Here H(p,t) and v(p,t) denote mean curvature and outer unit normal of the hypersurface M 1 at...
متن کاملA Local Regularity Theorem for Mean Curvature Flow
This paper proves curvature bounds for mean curvature flows and other related flows in regions of spacetime where the Gaussian densities are close to 1.
متن کاملMean Curvature Blowup in Mean Curvature Flow
In this note we establish that finite-time singularities of the mean curvature flow of compact Riemannian submanifolds M t →֒ (N, h) are characterised by the blow up of the mean curvature.
متن کاملThe Mean Curvature Flow for Isoparametric Submanifolds
A submanifold in space forms is isoparametric if the normal bundle is flat and principal curvatures along any parallel normal fields are constant. We study the mean curvature flow with initial data an isoparametric submanifold in Euclidean space and sphere. We show that the mean curvature flow preserves the isoparametric condition, develops singularities in finite time, and converges in finite ...
متن کاملMean curvature flow
Mean curvature flow is the negative gradient flow of volume, so any hypersurface flows through hypersurfaces in the direction of steepest descent for volume and eventually becomes extinct in finite time. Before it becomes extinct, topological changes can occur as it goes through singularities. If the hypersurface is in general or generic position, then we explain what singularities can occur un...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Results in Mathematics
سال: 2022
ISSN: ['1420-9012', '1422-6383']
DOI: https://doi.org/10.1007/s00025-022-01774-6